Text Analytics

Ion Androutsopoulos, Professor, AUEB (http://www.aueb.gr/users/ion)

Overview
The course is concerned with algorithms, models, and systems that can be used to process and extract information from natural language texts. Text analytics methods are used, for example, in sentiment analysis and opinion mining, information extraction from documents, search engines and question answering systems. They are particularly important in corporate information systems, where knowledge is often expressed in natural language (e.g., minutes, reports, regulations, contracts, product descriptions, manuals, patents). Companies also interact with their customers mostly in natural language (e.g., via e-mail, call centers, web pages describing products, blogs and social media).

Key Learning Outcomes
Upon completion of the course, students will be able to:

1. Describe a wide range of possible applications of Text Analytics in Data Science.
2. Describe Text Analytics algorithms that can be used in Data Science applications.
3. Select and implement appropriate Text Analytics algorithms for particular Data Science applications.
4. Evaluate the effectiveness and efficiency of Text Analytics methods and systems.

Requirements and Prerequisites
Basic knowledge of calculus, linear algebra, probability theory. For the programming assignments, programming experience in Python is required.

Required Course Materials
There is no required textbook. Extensive notes in the form of slides are provided.

Recommended books:

Software/Computing Requirements
An introduction to natural language processing and machine learning libraries (e.g., NLTK, spaCy, scikit-learn, Keras, PyTorch) will be provided, and students will have the opportunity to use these libraries in the course’s assignments. For assignments that require training neural networks, cloud virtual machines with GPUs (e.g., in Google’s Colab) can be used.

Grading
In each unit, study exercises are provided (solved and unsolved, some requiring programming), of which one or two per unit are handed in (as assignments). The final grade is the average of the final examination grade (50%) and the grade of the assignments to be submitted (50%), provided that the final examination grade is at least 5/10. Otherwise, the final grade equals the final examination grade.

Participation
In-class contribution is a significant part of our shared learning experience. You can excel in this area if you come to class on time and contribute to the course by:

- Providing strong evidence of having thought through the material.
- Advancing the discussion by contributing insightful comments and questions.
- Listening attentively in class.
- Demonstrating interest in your peers’ comments, questions, and presentations.
- Giving constructive feedback to your peers when appropriate.

Please arrive to class on time and stay to the end of the class period. Chronically arriving late or leaving class early is unprofessional and disruptive to the entire class.

Turn off all electronic devices prior to the start of class. Cell phones, tablets, and other electronic devices are a distraction to everyone. If the course requires you to use a laptop or other device in class, you will be informed to do so.

Late Assignments
Late assignments will either not be accepted or will incur a grade penalty unless due to documented serious illness or family emergency. Exceptions to this policy for reasons of civic obligations will only be made available when the assignment cannot reasonably be completed prior to the due date, you make suitable arrangements, and give notice for late submission in advance.

Attendance Requirements
Class attendance is essential to succeed in this course. An excused absence can only be granted in cases of serious illness or grave family emergencies and must be documented. Job interviews and incompatible travel plans are considered unexcused absences. Where possible, please notify the instructor in advance of an excused absence.
Students are responsible for keeping up with the course material, including lectures, from the first day of this class, forward. It is the student's obligation to bring oneself up to date on any missed coursework.

Code of Ethics

Students may not work together on individual graded assignments unless the instructor gives express permission.

Exercise integrity in all aspects of one's academic work including, but not limited to, the preparation and completion of all other course requirements by not engaging in any method or means that provides an unfair advantage. In any case of doubt, students must be able to prove that they are the sole authors of their work by demonstrating their knowledge to the instructor.

Clearly acknowledge the work and efforts of others when submitting written work as one’s own. Ideas, data, direct quotations (which should be designated with quotation marks), paraphrasing, creative expression, or any other incorporation of the work of others should be fully referenced. No plagiarism of any sort will be tolerated. This includes any material found on the internet. Reuse of material found in question and answer forums, code repositories, other lecture sites, etc., is unacceptable. You may use online material to deepen your understanding of a concept, not for finding answers.

Please report observed violations of this policy. Any violations will incur a fail grade at the course and reporting to the senate for further disciplinary action.

Course Syllabus

The course comprises ten units of three hours each.

Unit 1: Introduction, n-gram language models, spelling correction, text normalization

Introduction, course organization, examples of text analytics applications. *n*-gram language models. Estimating probabilities from corpora. Entropy, cross-entropy, perplexity. Applications in context-sensitive spelling correction and text normalization.

Units 2 & 3: Text classification with (mostly) linear classifiers

Representing texts as bags of words. Boolean and TF-IDF features. Feature selection and extraction using information gain and SVD. Text classification with *k* nearest neighbors and Naive Bayes. Obtaining word embeddings from PMI scores. Word and text clustering with *k*-means. Linear and logistic regression, stochastic gradient descent. Lexicon-based features. Constructing and using sentiment lexica. Practical advice and diagnostics for text classification with supervised machine learning.

Units 4 & 5: Text classification with Multi-Layer Perceptrons

Perceptrons, training them with SGD, limitations. Multi-Layer Perceptrons (MLPs) and backpropagation. Dropout. Batch normalization. MLPs for text classification, regression, window-based sequence labelling (e.g., for POS tagging, named entity recognition). Pre-training word embeddings, Word2Vec, FastText.
Units 6 & 7: Natural language processing with Recurrent Neural Networks

Units 8 & 9: Natural language processing with Convolutional Neural Networks and Transformers
Convolutional neural networks (CNNs) and applications in NLP. Image to text generation with CNN encoders and RNN decoders. Key-value attention, multi-head attention, Transformers, BERT.

Unit 10: Parsing and relation extraction
Transition-based and graph-based dependency parsing with deep learning. Relation extraction with deep learning, including graph convolutions on parse trees. Joint parsing and relation extraction.